

"Building for everyone" within a high value lowcost healthcare system

NERVES Annual meeting Los Angeles, CA April 21, 2023

Shawn Hervey-Jumper, MD FAANS

Associate Professor Department of Neurological Surgery Brain Tumor Center Director Glial Tumor Neuroplasticity Lab, Glial Tumor Neuroscience Program

Disclosures: Gilmartin Capital consultant

<u>Funding</u>: NIH- National Cancer Institute (NCI), National Institute of Neurological Disorders and Stroke (NINDS), Robert Wood Johnson Foundation, UCSF Comprehensive Cancer Center, LoGlio, Oligo Nation, Resonance Philanthropies

Brain Tumor Center

We need cancer therapies that work We need to understand how they work We need to build them for everyone

There are an increasing number of people diagnosed, living with, and dying from cancer $$_{\rm 2019}$$

201916.9 million alive with cancer history328 million people living in US5.1% alive with history of cancer

1971

3 million alive with cancer history 207.7 million people living in US 1.4% alive with history of cancer

people

Time (years)

Interactions between the nervous system and cancer

The brain is not a passive bystander.... "a brain tumor is not a marble"

Tumor models help us understand disease causes but only human application is truly relevant

Who are vulnerable patient populations in the US?

- 1. Female gender
- 2. Ethnic/racial minority groups- Black, Latinx, Asian American/PI, Native
- 3. Urban underserved
- 4. Rural underserved
- 5. LGBTQ+
- 6. Elderly

	Years	Women	Men		
American Indians/Alaska Natives	78.4	81.1	75.8		
Non-Hispanic whites	80.6	82.7	78.4		
SOURCE: U.S. Department of Health and Human Services, Office of Minority Health, https://minorityhealth.hhs.gov/omh/browse.aspx?lvl=3&lvlid=62.					

Differences in health outcomes not known to be attributable to the disease process itself- gender, geography, race/ethnicity.

A journey through treatment

57 yo Woman

80 yo Man

Treatment is a multistep process

Older age is one of the strongest predictors of shorter overall survival

Age as a predictor of risk

<u>Symptoms</u> and burden of disease varies- influenced by gender, socioeconomics, and race

Variable	No Insurance	Any Insurance	p Value
No. of patients	32	322	
Sex (no. female, %)	6 (18.75)	127 (39.44)	0.0218
Median age in yrs (range)	59 (19-83)	62 (18-88)	0.176
Median household income in \$1000s (range)	45.37 (25-128.35)	52.43 (19.95-140.90)	0.676
PCP status (no., %)			
Yes	0 (0)	232 (72.05)	
No	32 (100)	90 (27.95)	<0.001
Tumor characteristics			
Mean diameter in cm (95% CI)	4.56 (3.96-5.26)	4.44 (4.26-4.62)	0.72
Extent of resection (no., %)			
Gross-total	15 (46.88)	115 (35.71)	0.40
Subtotal	16 (50)	200 (62.11)	
Biopsy	1 (3.13)	7 (2.17)	
Mean ± SD length of stay in days	4.30 ± 2.09	4.83 ± 3.30	0.39
Poop at first recurrence (no. %)	8 (25)	75 (22 20)	0.82
Comorbidities at diagnosis (no., %)	24 (75)	166 (51.55)	0.01
CCI score (no., %)			
0	17 (53.13)	218 (67.7)	0.23
1	8 (25)	63 (19.57)	
≥2	7 (21.88)	41 (12.73)	
Postop adjuvant treatment (no., %)			
Radiation therapy	18 (56.25)	255 (79.2)	0.003
TMZ	18 (56.25)	242 (75.16)	0.02
Clinical trials	9 (28.13)	86 (26.71)	0.86
Agents in addition to Stupp protocol	13 (40.63)	138 (42.86)	0.81
Median postop survival in mos (95% CI)			
Overall	8.82 (5.55-10.59)	15.22 (13.61-16.64)	<0.0001
XRT plus TMZ	9.14 (5.29-16.04)	16.34 (14.9-18.21)	0.025
Patients with comorbidities	7.35 (2.73-13.15)	13.18 (11.28-15.22)	0.007

9% uninsured 91% insured More women, Latinx Same median household income More medical comorbidities Lower rates of completion chemoradiation

<u>Symptoms</u> and burden of disease varies- influenced by gender, socioeconomics, and race

Shorter survival for uninsured patients

Ē

Disease specific mortality purely because of no PCP

Designated PCP improves survival by 50% Over 60% improvement when insured w/PCP

When and why do we offer an operation?

Volume, location, functional status (KPS/language/motor), comorbidities, social support, presumed molecular sub-classification

There is general agreement among neurosurgeons regarding which patients to offer surgery

Muller JNS 2021

How do we decide who gets surgery? (when do surgeons decide against surgery)

Lancet Oncology 2022

0.5

Odds of recommendation against surgery

1.5

Meningioma

Black Glioblastoma

Black

Black

Black

Astrocvtoma

American Indian or Alaskan Native

American Indian or Alaskan Native

Asian or Pacific Islander

Asian or Pacific Islander

Asian or Pacific Islander Black

Vestibular schwannoma

Asian or Pacific Islander

American Indian or Alaskan Native Asian or Pacific Islander

American Indian or Alaskan Native

Pituitary adenoma American Indian or Alaskan Native

Integrated diagnosis drives treatment

Molecular diagnostics

Diffuse astrocytic and Louis D.N. von Deimling A. Cavenee W.K.

This 2016 update of the 2007 WHO classification incorporates well-established molecular parameters into the classification of diffuse gliomas, and this nosological shift has impacted the classification in several ways. Most notably, whereas all astrocytic tumours were previously grouped together, now all diffuse gliomas (whether astrocytic or not) are grouped together, on the basis of not only their growth pattern and behaviours, but more pointedly of their shared IDH1 and IDH2 genetic status. From a pathogenetic point of view, this provides a dynamic classification based on both phenotype and genotype; from a prognostic point of view, it groups tumours that share similar prognostic markers; and from the eventual therapeutic point of view, it will presumably guide the treatment of biologi-

cally similar entities.

Fig. 1.01 Diffuse gliomas: from histology, IDH status, and other genetic parameters to WHO diagnosis.

HO Classification of Tumours of the Central Nervous System

David N. Louis, Hiroko Obraki, Otmar D. Wiestlar, Web

Genomic: Molecular diagnostics

Data based almost entirely on European ancestry

Eckel-Passow et al Glioma groups based on 1p19q, IDH and TERT promoter mutation in tumors, NEJM 2015

Bench to Bedside: Molecular diagnostics

เล	Layer 1	Final Integrated Diagnosis	
Schem	Layer 2	Histologic Classification	
neral	Layer 3	WHO Grade	
Ge	Layer 4	Molecular Information	NEW

le	Layer 1	Anaplastic oligodendroglioma	
Examp	Layer 2	Infiltrating glioma with oligodendroglial features by microscopy	
ecific I	Layer 3	WHO Grade III	
Sp(Layer 4	Isocitrate dehydrogenase 1 mutation Whole-arm loss of both 1p and 19q	

Johnson et al. 2016 Updates to the WHO brain tumor classification system: what the radiologist needs to know. 2017. Radiographics

Who gets molecular testing is influenced by socioeconomic status

		% With	Testing %	Multivariable logisti of having MGMT test	c regression ting ^b
Characteristic	Total No.	o. testing ^a in 2016		aOR (95% CI)	P value
Age at diagnosis, y					
40-49	1258	61.5	81.2	1.27 (1.08-1.48)	.004
50-59	3437	58.3	74.3	0.98 (0.87-1.10)	.72
60-69	4251	57.3	74.2	1 [Reference]	
70-79	2875	55.2	70.9	0.95 (0.84-1.08)	.45
≥80	1009	50.0	69.0	0.83 (0.70-0.99)	.04
Primary payer					
Uninsured	386	42.8	60.9	1 [Reference]	
Private insurance	5841	60.8	76.1	1.78 (1.39-2.28)	<.001
Medicaid	802	53.9	74.9	1.30 (0.98-1.74)	.07
Medicare	5476	54.7	71.9	1.49 (1.14-1.93)	.003
Median household income by zip code, \$					
<38 000	1693	49.7	63.5	1 [Reference]	
38 000-47 999	2775	53.2	69.9	1.11 (0.96-1.29)	.15
48 000-62 999	3523	57.2	74.5	1.23 (1.06-1.42)	.006
≥63 000	4819	61.4	78.5	1.31 (1.13-1.52)	<.001
Cancer program type					
Community	466	44.9	56.2	1 [Reference]	
Comprehensive community	3794	44.3	66.8	0.99 (0.80-1.23)	.94
Academic/NCI-designated	6532	65.0	79.8	2.21 (1.78-2.73)	<.001
Integrated network	2038	57.5	72.2	1.65 (1.31-2.08)	<.001

Table 1 Eactors Associated With MCMT Promoter Methylation Testing in Patients With Cliphlastoma

Testing most likely for...

40 and over 80-year-olds Private insured Median income over \$63K Academic/ integrated model

Bench to Bedside: Individualized targeted therapies Precision medicine

41 year old woman

2 days of nausea and dizziness.

MRI shows 5 x 3 cm L frontal ringenhancing lesion

Pathology: GBM, IDH wt, EGFR amplified, MGMT methylated (index 14)

XRT/TMZ +ABT 414/placebo

TMZ + ABT 414/placebo

Off study, followed

Focal recurrence- precision medicine trial

1. Dose reduced TMZ

2. Olaparib- Parp inhibitor

3. Afatinib- Tyrosine kinase/EGFR inhibitor

4. Everolimus- mTOR inhibitor

Stable disease- cycle 10

Sequence recurrent tumor

UCSF 500 Precision medicine program sequencing results

Pathogenic or Likely Pathogenic SOMATIC ALTERATIONS

VARIANT	TRANSCRIPT ID	CLASSIFICATION	READS	MUTANT ALLELE FREQUENCY
CDKN2A, CDKN2B homozygous deletion	all	Pathogenic	N/A	N/A
EGFR high level amplification	all	Pathogenic	>30,000 (>50x)	N/A
PTEN p.Tyr177fs	NM_000314.4	Pathogenic	278	68%
TERT c146C>T	NM_198253.2	Pathogenic	368	45%
Trisomy 7, Monosomy 10	N/A	Pathogenic	N/A	N/A

Low- and middle-income settings end up with data which does not pertain adherence to international guidelines- cost/scientifically invalid

SNOSSA annual meeting 2019

Glioma

Diffuse astrocytoma

ATRX lost

TP53-mutated

Brain Tumor Center

Diffuse glioma

DH1-positiv

ATRX retained

TP53-negative

Diffuse glioma with an

IDH1.nonative

with any of the

ahove

histologic

ous morphology

and ATRX los

What about timing of treatment?

Only patient with commercial insurance- Black and Latinx 1.2 HR

Symptoms
Diagnosis
Surgery
Chemoradiation
Recurrence
Experimental therapies

Nathan J NeuroOncol 2017

Brain Tumor Center

Recurrence is universal with brain cancer

What comes next when the tumor grows back?

- 1. Another chemotherapy drug (<10% respond)
- 2. Palliative care/hospice (most continue to have excellent functional status)
- 3. Clinical Trial/ experimental therapies

Mouse data doesn't work in humans

How do we translate advances in cellular level analysis of the brain from model organisms of human brain/disease ?

Human experiments

- 1. Highly variable
- 2. No/low cell type specificity
- 3. Intralesional heterogeneity
- 4. Limited functional experimentation
- 5. Little genetic access

1 billion neurons 1 trillion network connections

Mouse models

- 1. Highly controlled
- 2. Cell type specific
- 3. Functional experimentation
- 4. in vivo
- 5. little intralesional heterogeneity
- 6. Genetic access
- 7. Quick results

How we deliver therapies into the brain

It takes time for treatments to make their way from bench to bedside-What does FDA approval mean?

A history of brain imaging

Raichle. Brief history of human brain mapping. Trends in Neurosciences. 2008, 32(2):118-126

Where do new cancer drugs come from?

Relative to European ancestry participants 9.1% enrollment Latinx OR 0.72 10.8% enrollment Black OR 0.71 3.8% enrollment AAPI 0.7% enrollment Native

30-64 year olds 3% 65-74 year olds 1.3% Over 75 year olds 0.5%

Characteristic	Trial Participants, No. (%)	Proportion of Incident Cancer Patients, %†	Proportion of US Population, %†
Race/ethnicity		00.4	75 7
White non-Hispanic	64 355 (85.6)	83.1	/5./
Hispanic	2292 (3.1)	3.8	9.1
Black	6882 (9.2)	10.9	10.8
Asian/Pacific Islander	1446 (1.9)	2.0	3.8
American Indian/Alaskan Native	240 (0.3)	0.2	0.7
Type of cancer Breast	40788 (54.2)	27.9	
Colorectal	15 406 (20.5)	20.3	
Lung	9416 (12.5)	24.6	
Prostate	9605 (12.8)	27.1	
Age, v			
30-64	51 145 (68.0)	37.5	78.5
65-74	17 851 (23.7)	31.4	11.3
≥75	6219 (8.3)	31.2	10.2
Sex			
Male	24 104 (32.1)	51.0	47.6
Female	51 111 (67.9)	49.0	52.4

37,635 patients

Steady decline in women and minority patients

Review of clinical trial participation among vulnerable populations in trials supported by NIH

	2013 (%)	2014 (%)	2016 (%)	2017 (%)	2018 (%)
Female	44.3	47.2	54.1	47.9	52.4
American Indian	2.1	1.3	0.8	0.7	1.0
Asian	15.1	17.2	8.4	26.4	7.8
Black/African American	12.2	14.3	10.0	10.8	13.5
Native Hawaiian/Pacific Islander	0.3	0.3	0.6	0.1	0.2
White	52.9	49.5	49.6	49.9	60.0
More than 1 race	1.1	1.1	2.0	1.9	2.3
Unknown race	1.1	1.1	2.0	1.9	2.3
Hispanic	9.8	8.1	10.8	6.7	8.5
Non-Hispanic	86.1	89.6	62.6	81.8	76.2
Unknown ethnicity	4.1	2.3	22.4	9.8	12.0
Sum of all races	84.7	84.8	73.5	91.8	87.2
Sum of all ethnicities	100.0	100.0	95.8	98.3	96.7

NOTE: The full analysis is available in Appendix B.

Bibbins-Domingo et al 2022

Brain Tumor Center

Who gets screened and who gets enrolled into brain cancer trials?

	Mir	nority	Non-minority	OR ^a		p-value ^b
Initial diagnosis						
Trial screening pursued	94/	261 (36.0%)	212/443 (47.9%)	0.61 [0.4	45-0.84]	0.002
Trial enrollment	37/.	261 (14.2%)	87/443 (19.6%)	0.68 [0.4	44-1.03]	0.07
Recurrence						
Trial screening pursued	80/	164 (48.8%)	231/460 (50.2%)	0.94 [0.0	66-1.35]	0.75
Trial enrollment	46/	164 (28.0%)	119/460 (25.9%)	1.12 [0.7	75–1.67]	0.59
	White/Caucasian	Black/African Ameri- can	Asian/Pacific Islander	Hispanic/Latino	American Indian/Alaskan Native	Not Reported
New diagnosis						
Trial screening pursued	212/443 (47.9%)	13/39 (33.3%)	62/172 (36.1%)	17/40 (42.5%)	1/6 (16.7%)	1/4 (25.0%)
Trial enrollment	87/443 (19.6%)	4/39 (10.3%)	28/172 (16.3%)	4/40 (10.0%)	1/6 (16.7%)	0/4 (0%)
Recurrence						
Trial screening pursued	231/460 (50.2%)	6/19 (31.6%)	55/100 (55%)	14/34 (41.2%)	1/1 (100%)	4/10 (40%)
Trial enrollment	119/460 (25.9%)	4/19 (21.1%)	27/100 (27%)	12/34(35.3%)	0/1 (0%)	3/10 (30%)

Table 2 Minority versus non-minority rates of trial screening and enrollment

Fewer minorities screened and therefore fewer enrolled

Morshed et al JNO 2020

Brain Tumor Center

Who is most likely to enroll?

Shorter distance to hospital In-state Privately insured Higher median household income employed

	Minority (n=320)	Non-minority (n=650)	p-value
Age at diagnosis	48.6 [46.9-50.3]	51.6 [50.5-52.8]	0.002
Sex			
Male	178 (55.6%)	388/650	0.23
Female	142 (44.4%)	262/650	
WHO grade			
II	95 (29.7%)	176/650	0.68
III	58 (18.1%)	126/650	
IV	167 (52.2%)	348/650	
Location			
In-state	279 (87.2%)	470 (72.3%)	< 0.0001
Out-of-state	41 (12.8%)	180 (27.7%)	
Distance from UCSF (miles) ^a	71.9 [59.5-84.3]	104.4 [94.8-119.9]	< 0.0001
Insurance type			
Private	182/314 (58.0%)	412/630 (65.4%)	< 0.0001
Public	91/314 (29.0%)	190/630 (30.2%)	
None	41/314 (13.0%)	28/630 (4.4%)	
Employed ^b	57/149 (38.3%)	285/559 (51.0%)	0.006
Mean household income	85,476.30 [81,803-89,150]	78,259.30 [75,668-80,850]	0.002
Percent below poverty	11.9% [11.1–12.7%]	11.5% [10.9–12.0%]	0.46

Morshed J et al NeuroOncol 2020

Who have enrollment numbers changed over 20 year period post NIH revitalization act?- Women

Reihl et al Neuro-Oncology 2022

Who have enrollment numbers changed over 20 year period post NIH revitalization act?- Minorities

╘┯═

Who have enrollment numbers changed over 20 year period post NIH revitalization act?- Minorities

■ 2000–2004 ■ 2005–2009 **■** 2010–2014 **■** 2015–2019

Reihl et al Neuro-Oncology 2022

Brain Tumor Center

Which studies do enroll at benchmark levels?

Inclusive hiring practices matters

Age < 60 Median income under \$60K Single mom- 12 year old son Spanish speaker Seizures- unable to drive Lives 75 miles from tertiary care Registered for medi-Cal

Symptoms
Diagnosis
Surgery
Chemoradiation
Recurrence
Experimental therapies

McCain hated Obamacare. He also saved it.

The Arizona senator, who died on Saturday, was driven less by his interest in health care policy than his disdain for bullies trampling the "little guy."

What can we do to built programs/research/clinical access for everyone?

1. Community outreach and marketing

Conceptual model of rural trial enrollment:

How many surgeries must a surgeon perform to be considered an expert- i.e. perioperative risk declines?

AHA Journals Jo	urnal Information	All Issues	Subjects	Features	Resour
Home > Stroke > Vol. 46,	No. 5 > Surgeon Case Vol	ume and 30-Day Mo	rtality After Carotic	i Endarterectomy A	mong Co
FREE ACCESS RESEARCH ARTICLE	Surgeon Cas Carotid End Medicare Bo	se Volume arterectom eneficiaries	and 30-Da y Among (s	y Mortality Contempor	/ After ary
F PDF/EPUB	Before and Aft re Carotid Artery	ter National C Stenting	, coverage Det	ermination 1	or
Jump to	Hiraku Kumamaru Marie D. Gerhard-I John D. Seeger, Ji	, Jessica J. Jalbe Herman, Lauren J un Liu, Jessica N	ert, Louis L. Ng A. Williams, Chi I. Franklin and S	uyen, ih-Ying Chen, Soko Setoguchi	
Abstract	Originally published Stroke. 2015;46:1288	1 19 Mar 2015 http 3–1294	s://doi.org/10.116	I/STROKEAHA.11	4.006276
Introduction	Other version(s)	of this article	~		
Methods					
Results	Abstract				
Discussion	Background a	nd Purpose—	-		
Conclusions	After the 2005 N	Vational Covera	age Determin	ation to reimb	urse
Sources of Funding	carotid artery st	enting (CAS) fo	or Medicare b	eneficiaries, t	ne
Disclosures	number of CAS endarterectomy	procedures in (CEA) decreas	creased and o sed. We evalu	carotid ated trends in	
Footnotes	surgeons' past-	year CEA case	-volume and	30-day morta	lity after
Reference	CEA, and their a Coverage Deter	association bei mination.	fore and after	the National	

10-20 cases per year associated with lowest surgical complications

How many surgeries must a surgeon perform to be considered an expert- i.e. perioperative risk declines?

Stroke

AHA Journals Jo	urnal Information	All Issues	Subjects	Features	Resour
Home > Stroke > Vol. 46,	No. 5 > Surgeon Case Vol	ume and 30-Day Mo	ortality After Caroti	d Endarterectomy /	Among Co
FREE ACCESS RESEARCH ARTICLE	Surgeon Ca Carotid End Medicare B	se Volume arterectom eneficiarie:	and 30-Da iy Among (s	ay Mortalit Contempo	y After rary
🖌 Tools 🖍 Sha	Before and Aft	ter National (Stenting	Coverage De	termination f	ior
Jump to	Hiraku Kumamaru Marie D. Gerhard- John D. Seeger, J	, Jessica J. Jalb Herman, Lauren un Liu, Jessica I	ert, Louis L. Ng A. Williams, Ch M. Franklin and	uyen, ih-Ying Chen, Soko Setoguchi	Y
Abstract	Originally published Stroke. 2015;46:1288	d 19 Mar 2015 http 3–1294	os://doi.org/10.116	1/STROKEAHA.11	4.006276
Introduction	Other version(s)	of this article	\sim		
Methods					
Results	Abstract				
Discussion	Background a	nd Purpose-	_		
Conclusions	After the 2005 M	National Cover	age Determin	ation to reimb	urse
Sources of Funding	carotid artery st	enting (CAS) f	or Medicare b	eneficiaries, t	he
Disclosures	endarterectomy	procedures in (CEA) decrea	sed. We evalu	carotid iated trends ir	ı
Footnotes	surgeons' past-	year CEA case	e-volume and	30-day morta	lity after
Reference	CEA, and their a	association be	fore and after	the National	

Coverage Determination.

Community outreach- partnerships Access to a neuro-oncologist varies greatly across the US

People want care in their community- how can we bridge this gap

Brain Tumor Center

What can we do to built programs/research/clinics for everyone?

- 1. Community outreach and marketing
- 2. Education efforts for both patient and providers
- 3. Patient facing programs to increase access to surveillance and screening
- 4. Travel/ transportation resources
- 5. Treatment inequities education
- 6. Funding agency review of enrollment practices

Factors Affecting Willingness to Participate in Therapeutic Clinical Trials for Minority Patients with Low and High-Grade Gliomas

- 82 trial participants (N=8, 10% minority) and 192 non-trial participants (N=44, 23% minority) completed the SPECIFIC questionnaire.
- Compared to non-trial participants, trials participants were more likely to be:
 - White (83%vs74%,p=.02)
 - Non NIH-designated minority (90%vs77%,p=.02),
 - Privately insured (83%vs66%,p < .001)
 - Higher income level (79%vs65%,p=.03)
 - Referred for a trial (29% vs 5%, p=<.001)

Perception Towards Clinical Trials Among Non-Trial Participants

I believe the doctors/scientists conducting the clinical trials have my best interests at... I prefer standard treatment therapies for my condition. I believe my racial/ethnic group bears disproportional risks when participating in... I am concerned participating in a clinical trial will impede my quality of life. I believe the potential risks of participation outweigh the potential benefits. I am concerned I do not have the time to participate due to other commitments. I am concerned my insurance will not cover all expenses involved in participation. I am concerned about incurred costs to me if I participate in a clinical trial. I fear being a guinea pig in experiments if I participate in a clinical trial. I think my condition would get worse unless I take part in a clinical trial. I trust doctors conducting clinical trials. My family would support my participation in a clinical trial. I believe the quality of care I receive will be better as part of this trial. I believe I will be monitored more closely as part of this trial. I want to contribute to scientific research. I believe the results from the trial could benefit other patients in the future. I think clinical trials offer the best treatment available. I would agree to donate tissue for genetic research even if I was not told my genetic.. I have concerns about the use and storage of blood and tissue samples for research.... I believe cancer research will help doctors better understand and treat cancer.

Results Summary

Non-trial participants were more likely to endorse:

A fear that "risks outweigh benefits" (22%vs0%,p < 0.001)

A fear of "burden to quality of life" (14%vs0%, p < 0.001).

A concern for "costs of participation" (24%vs11%,p=0.01).

Perception Towards Clinical Trials Among Trial Participants

Results Summary

Trial participants were more likely to:

- "desire to contribute to scientific research" (95%vs82%,p=0.006)
- "trust physician investigators" (95%vs81%,p=0.005)
- "fear a worsening of their condition without clinical trial enrollment" (22%vs12%,p=0.02)

I believe the doctors/scientists conducting the clinical trials have my best interests at heart. I prefer standard treatment therapies for my condition. I believe my racial/ethnic group bears disproportional risks when participating in clinical... I am concerned participating in a clinical trial will impede my quality of life. I believe the potential risks of participation outweigh the potential benefits. I am concerned I do not have the time to participate due to other commitments. I am concerned my insurance will not cover all expenses involved in participation. I am concerned about incurred costs to me if I participate in a clinical trial. I fear being a guinea pig in experiments if I participate in a clinical trial. I think my condition would get worse unless I take part in a clinical trial. I trust doctors conducting clinical trials. My family would support my participation in a clinical trial. I believe the quality of care I receive will be better as part of this trial. I believe I will be monitored more closely as part of this trial. I want to contribute to scientific research. I believe the results from the trial could benefit other patients in the future. I think clinical trials offer the best treatment available. I would agree to donate tissue for genetic research even if I was not told my genetic results. I have concerns about the use and storage of blood and tissue samples for research. I... I believe cancer research will help doctors better understand and treat cancer.

All Motivating Factors For Prospective Trial Participants

I think my condition will get worse unless I take part 26% in this trial. I trusted the doctor treating me. My family encouraged me to participate. 16% I believe the quality of care I receive will be better as 44% part of this trial. I believe I will be monitored more closely as part of 47% this trial. I want to contribute to scientific research. I believe the results from this trial could benefit other patients in the future. I thought this trial offered the best treatment available.

Most Significant Factor That Led to Positive Decision to Enroll

Community Investment Model

Bibbins-Domingo et al 2022

Brain Tumor Center

Acknowledgements

Thank you, patients and families!

Edward Chang, MD Mitchel Berger, MD Saritha Krishna. PhD Andy Daniel, PhD Anthony Lee, MD PhD Alexander Aabedi, MD Gray Umbach, MD Mia Salans, MD Jasleen Kaur Mikias Negussie Mulki Mehari Abraham Dada Cesar Nava Gonzales Nancy Ann Oberheim-Bush MD, PhD Jennie Taylor, MD MPH Susan Chang, MD Annette Molinaro, PhD Joanna Phillips, MD PhD

<u>Stanford Neurology</u> Michelle Monje MD PhD Lijun Ni Humsa Venkatesh

<u>University of Michigan Psychology</u> David Brang, PhD Daniel Weissman, PhD

<u>UCSF Biomedical Imaging Laboratory</u> Srikantan Nagarajan, PhD Anne Findlay

<u>UCSF Radiation Oncology Raleigh Laboratory</u> David Raleigh, MD PhD Abrar Choudhary Kyounghee Seo Tomoko Ozawa

Robert Wood Johnson Foundation

Resonance Philanthropies

National Institute of Neurological Disorders and Stroke

Thank you for the opportunity to speak!

@HerveyJumper

Shawn Hervey-Jumper, M.D., FAANS

Associate Professor Department of Neurological Surgery University of California San Francisco Principal Investigator, Brain Tumor Research Center Co-Director of the Sheri Sobrato Brisson Brain Cancer Survivorship Program

Bidirectional interactions between glioma cells and neurons

